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Optimizing a Sampling Network
Automating the Use of Geostatistical Tools for Lake Tahoe Area Study
By Witold Fraczek, ESRI Application Prototype Lab, and Andrzej Bytnerowicz, USDA Forest Service

A reference relief map showing the terrain 
surrounding Lake Tahoe. The original 
ozone monitoring station locations used 
to study air pollution in the area are indi-
cated with red markers. 

Editor’s note: This article describes how pow-
erful analysis tools in the ArcGIS Geostatistical 
Analyst 9.2 extension were applied in a study 
of air quality degradation around Lake Tahoe, 
a resort destination located on the California/
Nevada border. As part of the study, a model 
to optimize the monitoring network by locating 
additional monitoring stations was built using 
ModelBuilder. An accompanying article, “Mak-
ing Effective Use of Geostatistics,” introduces 
this class of statistics. 

About the Study
The transparency and purity of Lake Tahoe’s wa-
ter has been deteriorating since the 1950s, partial-
ly due to increased deposition of nitrogenous air 
pollutants. Forests in the Lake Tahoe watershed 
have also suffered from stresses such as drought, 
overstocking, and elevated concentrations of 
phytotoxic air pollutants, mainly ozone.
 Ozone, one of the most damaging air pollut-
ants, has strong toxic effects on human health 
and vegetation and is most indicative of photo-
chemical smog. 
 One of the main questions for scientists and 
forest managers in this area is whether air pollu-
tion (specifically ozone) is generated locally or 
is migrating with the prevailing westerly winds 
from California’s Central Valley, an area  known 
for high levels of air pollution. A study to de-
termine the origin of ozone found in the vicin-
ity of Lake Tahoe was undertaken by the Forest 
Service and ESRI. Initially, ambient ozone con-
centrations were measured using a network of 
31 sampling stations established by the United 
States Department of Agriculture (USDA) For-
est Service Pacific Southwest Research Station 
scientists from the Riverside Fire Laboratory in 
Riverside, California.

Looking at the Original Network
Knowledge of the central Sierra Nevada Moun-
tains, both the general patterns of ozone dis-
tribution and the westerly wind pattern in this 
area, led to the positioning of several monitor-
ing points on the western slopes of these moun-
tains. Most monitoring stations were located 
inside the Lake Tahoe Basin.

Right: An ozone concentra-
tion prediction map showing 
the west–east trend in ozone 
concentration.
 Three elevation transects were 
set to measure ozone concentra-
tion at different altitudes to learn 
if these concentrations could be 
correlated with elevation.
 Prediction maps of ozone con-
centration were generated using 
Geostatistical Analyst. Because 
no strong correlation was de-
tected between ozone and elevation, cokriging 
could not be applied. Most maps of ozone con-
centration showed a noticeable trend. The main 
range of the Sierra Nevada Mountains apparent-
ly blocks the transport of ozone from the Cen-
tral Valley, located to the west of the study area. 
This helps explain why no correlation between 
ozone concentration and elevation was detected. 
Monitoring stations located at similar elevations 

but on opposite sides of the main range reported 
significantly different ozone values.

Looking at Error
A map of prediction standard error was created 
using the same kriging method and parameters 
that were used to generate ozone prediction maps. 
The bright yellow colors indicated areas where the 
prediction standard error for the existing network 



of 31 monitoring stations was low or, to state it 
another way, the level of confidence in the results 
was high. Dark brown was used to symbolize ar-
eas of low confidence. 
 No prediction is certain and every mea-
surement is subject to error. It is necessary to 
analyze the prediction standard error surface 
to understand the reliability of the results. Esti-
mating the critical value of the standard error is 
beyond the scope of this article. It is sufficient 
to say that, since geostatistical surfaces are con-
tinuous, setting a precise value for a threshold 
for the certainty/uncertainty of a prediction, 
though highly desirable, was not feasible, as it 
depended on many potential contributing fac-
tors. Typically, a transitional zone of disputed/
conditional reliability is determined. To exam-
ine the reliability of the established monitoring 
network’s results, a threshold value was care-
fully estimated and it was determined that only 
63 percent of the study area was estimated with 
reliable accuracy.

Above right: The prediction standard error map generated with ordinary kriging shows surfaces of prediction uncertainty classified into 
10 categories with initial monitoring stations labeled. Bottom: The study area with the forested area surrounding Lake Tahoe. The initial 
31-station network did not adequately cover this area.



This prediction map of ozone concentrations 
was made using ordinary kriging and soft-
ware default values. 

To create a more reliable surface, trend and 
error modeling were added.

After evaluating the reliability of the surface, 
it was clear that more sampling points were 
needed.

The increase in the yellow areas indicates 
that adding six monitoring stations has made 
the network more reliable.

The output geostatistical surfaces of pre-
diction standard error generated by the 
model were converted into rasters with the 
same color schema and displayed with the 
forest area.

The surface of prediction standard error 
based on 37 sampling points was consider-
ably brighter, signifying that the prediction of 
ozone concentration based on the enhanced 
network would be more reliable.

The locations of the additional stations are in-
dicated in cyan.

The prediction standard error surface based 
on a network of 37 points is much brighter 
and more reliable.



Making the Network More Reliable
Because the reliability of geostatistical analysis 
depends on having a sufficient number of appro-
priately distributed sampling stations, monitoring 
activities commonly encounter problems caused 
by networks of sampling points that are not suf-
ficiently dense. 
 GIS can be applied to optimize a monitor-
ing network. In this case, it was used to im-
prove the reliability of the ozone concentration 
predictions. Models of ozone concentration and 
models of prediction standard error of ozone 
concentration were generated to determine lo-
cations where new sampling stations were most 
needed. These stations could be added until the 
surface of prediction standard error for the entire 
study area was below a given threshold or until 
the project budget was exhausted—whichever 
came first. 
 This article provides an overview of how 
Geostatistical Analyst was applied to that 
end rather than a detailed description of each 
step taken. The initial network of 31 points 
was improved using a model that was created 
in ModelBuilder. This Automated Network 
Densifier model incorporated new options in 
Geostatistical Analyst that were introduced with 
ArcGIS Desktop 9.2. 
 Two ozone prediction maps were generated 
and compared. The methods and parameters used 
to generate the one with higher accuracy were ap-

plied to create maps of prediction standard error. 
Several supplemental points were sequentially 
added to the network at the locations showing 
the lowest reliability. To graphically demonstrate 
the increasing trustworthiness of the predictions, 
based on the growing number of monitoring sites, 
maps of the variability of the prediction standard 
error used the same color symbology. 

Using the Default Parameters
The study used ozone concentrations obtained 
for the month of July because during that month 
ozone concentrations are usually highly elevat-
ed and have greater potential for both harmful 
health effects and damage to forest vegetation. 
 Using the Geostatistical Wizard, a tool in 
Geostatistical Analyst that leads users through the 
process of creating a statistically valid surface, a 
prediction map was created for the ozone concen-
tration. It was generated by applying the default 
options for ordinary kriging. The resulting map 
indicated that the spatial distribution of ozone in 
July over the study area had a west–east trend 
(i.e., a high concentration in the west, a low con-
centration in the east, and continuously changing 
intermediate concentrations in between).
 While the map generated using default values 
was acceptable, it is always more desirable to pro-
duce  distribution maps of a given phenomenon 
as accurately as possible. Geostatistical Analyst 
has many methods and options. Expertise and 

experience are required for optimally generat-
ing a more reliable geostatistical surface. It is 
necessary to customize methods and parameters 
for each dataset to create a surface more reliable 
than the one generated by default values.

Modifying Default Parameters
For the ozone dataset, the following kriging pa-
rameters were applied.
n Const option of the order of trend removal 

was set to 67 percent Global.
n The Smooth option was used to make the ap-

pearance of the output map look smoother.
n The Nugget effect value was reduced to 15.
n The Major Range was set to 40,000.
n The Error Modeling slider for measurement 

error was set to 50 percent.
 The new layer generated from these param-
eters was named Kriging with trend and error 
modeling. The resulting surface was smoother, 
yet more detailed. It showed more features of 
ozone distribution in addition to those generated 
using only the default parameters. 
 Despite noticeable differences, the Kriging 
with trend and error modeling surface visually 
resembled the previous one. Which surface was 
more reliable? Geostatistical Analyst has spe-
cial tools that help the user select the best sur-
face. These tools are accessed by right-clicking 
the newly generated geostatistical surface in the 
table of contents and selecting Compare from 
the context menu.

The Cross Validation Comparison dialog box compares five parameters of prediction errors.



Performing Diagnostics
The Cross Validation Comparison dialog box 
compares five prediction error parameters. All 
error parameters, with the exception of the Root-
Mean-Square Standardized, should be as close 
to 0 as possible for the most accurate output. For 
the Root-Mean-Square Standardized parameter, 
the result should be close to 1. In this example, 
four out of five of the error parameters indicated 
that the surface created by applying both trend 
and error modeling was more accurate. The 
most critical indicator of prediction accuracy, 
Root-Mean-Square Standardized, also indicated 
that the surface created using trend and error 
modeling was the winner. Obviously, additional 
prediction standard error surfaces could be gen-
erated using different sets of parameters. 
 After selecting the most accurate surface, the 
spatial distribution of the reliability of that layer 
(or in other words, the levels of uncertainty in 
the generated surface of ozone concentration) 
can be determined by creating a prediction stan-
dard error map. This map was generated using 
exactly the same parameters that were used for 
the latest prediction map. From the Method 
Summary interface, the methods and parame-
ters that were used to generate the most accurate 
geostatistical surface were saved to an XML 
file for use later in the process. The same sym-
bology was used—bright yellow color for the 
areas of highest reliability and dark brown for 
areas of lowest reliability. This prediction map 
showed that areas at the map edges and in the 
central part of the study area had low prediction 
reliability. 
 To improve the reliability of the ozone dis-
tribution surface and determine whether there 
was a significant ozone-generating source in the 
vicinity of Lake Tahoe, more sampling points 
were needed. The project’s budget allowed for 
six additional measurement stations for the next 
season. Locations of new monitoring points 
were chosen to improve the overall reliability 
of the geostatistical interpolation by sampling at 
the locations within the study area where reli-
ability was the lowest. In addition, all supple-
mental points had to be located within the for-
ested portion of the study area. 
 Locations for the new points could be se-
lected manually in ArcMap based on the cri-
teria previously stipulated. Alternatively, 
locations could be selected using an automated 
method—a model. Part of the ArcGIS geopro-
cessing framework, ModelBuilder provides a 
graphic environment for creating, running, and 
saving models. Introducing a model would re-
duce subjectivity, make the selection of the pro-
spective locations reproducible, and make the 
rules transparent. 
 The Automated Network Densifier model 
created for this project generated an enhanced 
monitoring network by adding supplemental 
points at the locations where they were most 
needed to reduce the overall prediction uncer-
tainty. The prediction standard error geostatisti-
cal surface, the input data for the model, was 

The Automated 
Network Densifier 
Model 
The model converts 
the two geostatistical 
surfaces to the grid 
raster format and clips 
both to the geograph-
ic extent of the study 
area. The maximum 
value on the standard 
error of prediction 
grid is found, and that 
cell is converted into 
a point shapefile with 
a single feature and 
the value of the ozone 
concentration as its 
attribute. This is the 
optimal point for
adding a station.

In the next iteration, 
this feature is ap-
pended to the original 
sampling network 
shapefile and a new 
geostatistical layer of 
prediction standard 
error is generated 
from the original 
31 stations plus the 
new stations. The 
XML file containing 
the initial prediction 
standard error surface 
parameters is used 
to generate each 
iteration. The process 
is repeated to iden-
tify as many network 
sampling locations as 
desired.

In addition to five 
input datasets and 
18 utilized functions, 
the model consists 
of two precondi-
tions. First, since the 
ozone concentration 
geostatistical layer is 
not changed during 
the workflow, it is 
converted into a grid 
only during the first 
iteration. Second, only 
the last output grid of 
prediction standard 
error is converted into 
isolines of equal values 
of prediction standard 
error (contours). 



updated at each iteration as the model appended 
one additional sampling point to the current 
monitoring network. The model could be run 
once to indicate where the most crucial miss-
ing point was located. It could also be run for 
a specified number of iterations to generate as 
many additional points as the project’s budget 
allowed or until a variable was no longer equal 
to a predetermined condition. For example, it 
could be run until the maximum standard error 
of prediction for the study area was less than the 
largest acceptable potential error of prediction. 
The new points were sequentially placed at the 
location of the largest current potential standard 
error of prediction. 
 The Automated Network Densifier model 
takes five input data layers:
n The established monitoring network of 

31 sites (as a shapefile)
n The geostatistical surface of ozone concen-

tration that is based on the 31 original ozone 
monitoring sites

n The geostatistical surface of prediction 
standard error that is based on the original  
31 monitoring sites

n The XML file containing the methods and 
parameters used to create the prediction 
standard error geostatistical layer originally 
selected

n The forested area at the vicinity of Lake Tahoe 
that constitutes the study area (as a grid file)

 This model does not account for proximity 
to roads or access restrictions because adequate 
data for these factors was not available. As-

Classification using Geometrical Interval is now available.

suming the project budget allows for several 
monitoring stations to supplement the initial 
network, six iterations of the model were run 
and the locations for six new sampling stations 
were determined. The geostatistical surface of 
the standard error of prediction resulting from 
the sixth iteration was displayed together with 
the relevant vector version of the isolines of pre-
diction standard error. 
 The points added to the network can be more 
easily seen by turning off the newly created lay-
ers in the table of contents and looking for the 
discrepancies between the geostatistical layer 
and the isolines of prediction trust. Because the 
supplemental points had to be located within 
the forested area, displaying the forested area 
grid as a semitransparent green polygon made 
it easier to understand why these locations were 
chosen. 
 As expected, increasing the density of the 
monitoring network decreased the standard er-
ror of prediction for the entire study area. To 
better measure the increase in reliability caused 
by adding supplemental stations, the output 
geostatistical surfaces of prediction standard er-
ror generated by the model were converted into 
rasters with the same color schema. 
 In ArcGIS 9.2, users can now apply the Geo-
metrical Interval classification to both rasters and 
geostatistical surfaces simply by right-clicking 
on the layer, choosing Properties > Symbology, 
and using the Classification option to change 
the classification to Geometric Interval. This 
method was applied to the output grid from the 

final iteration of the Automated Network Densi-
fier model with the number of classes set to 10 
and a yellow to dark red color ramp. 
 Comparing the prediction standard error sur-
face generated based on the initial 31 stations 
with the surface that used all 37 stations illus-
trated how the level of certainty of the predic-
tion improved when the final grid was rendered 
using the same color symbology. The prediction 
standard error based on the original number of 
stations was displayed with the additional sta-
tions. The surface of prediction standard error 
based on 37 sampling points was considerably 
brighter, signifying that the prediction of ozone 
concentration based on the enhanced network 
would be more reliable. Without going into nu-
merical details, the network of 37 stations can 
provide enough sampling data to significantly 
improve the trustworthiness of prediction over 
the entire study area. Whether the six additional 
stations for this network were sufficient to meet 
a minimum acceptable threshold of reliability is 
beyond the scope of this article. 
 The final result seems to confirm that the Au-
tomated Network Densifier model can improve 
the network design process during the second 
stage of sequential sampling. The proposed 
method appends the supplemental sites in a rea-
sonable manner. It adds new points where they 
are most effective in enhancing reliability. With 
the model, as each new point is added, the im-
provement in the network can be observed.



Making Effective Use of Geostatistics

Geostatistics is a branch of science that applies statistical methods to spatial interpolation. Al-
though geostatistics was developed independently of GIS, it has become an integral part of GIS. 
Without a computer and GIS mapping ability, it wouldn’t be known outside a small group of geo-
statistical gurus. Just as one does not have to be a GIS expert to use GIS, one doesn’t need to be 
a geostatistician to make effective use of geostatistics. Meteorologists, soil scientists, geologists, 
oceanographers, foresters, and other scientists can benefit from using appropriate geostatistical 
methods. 
 The functionality of geostatistics is applicable when the studied phenomena are regionalized 
variables that fall between random and deterministic variables. The geographic distribution of 
regionalized variables cannot be mathematically described as deterministic; yet the distribution 
of intensity of those phenomena is not random. Most of the natural phenomena that take place 
in the atmosphere, seawater, or soil meet the criteria of this category. The distribution of air tem-
perature, the salinity of an ocean, soil moisture, or ore deposit concentrations in a geologic layer 
are examples of regionalized variables. Even though they don’t represent truly natural phenomena, 
crop yield prediction and air pollution might also be subjects for geostatistical analysis.
 It is not practical or possible to make exhaustive real-world observations so sampling is used 
for these analyses. The ultimate goal of sampling is to get a good representation of the phenom-
enon under study. Spatial sampling is an important consideration in environmental studies be-
cause sample configuration influences the reliability, effectiveness, and cost of a survey. Intensive 
sampling is expensive but gives a precise picture of spatial variability for a given phenomenon. 
However, sparse sampling is less expensive but may miss significant spatial features. Practical 
sampling constraints and the availability of existing information can enhance the development of 
a sampling scheme. 
 To ensure a high level of confidence in the results of any geostatistical interpolation, it is impor-
tant to have a sufficient number of well-distributed sampling stations in the monitoring network. 
How many stations are sufficient and how can their distribution be optimized? GIS, and particularly 
the ArcGIS Geostatistical Analyst extension, can help answer this question. 
 One technique used to design an optimal sampling network for a regionalized variable, such as 
air pollution, is sequential sampling. Sequential sampling is based on extended knowledge of the 
area to be sampled and expertise in the factors controlling the distribution of a regionalized vari-
able. Familiarity with the terrain and the phenomena should inform the initial choice of site for the 
sampling network. The results of this preliminary study are used to optimize the scheme by adding 
new sampling points both in areas having the lowest reliability and in possible hot spot areas (e.g., 
areas of maximum concentration, high variability, or uncertain measurements).
 The kriging interpolator is considered the most sophisticated and accurate way to determine 
the intensity of a phenomenon at unmeasured locations. Kriging weights surrounding measured 
values are based not only on the distance between measured points and the prediction location 
but also on the overall spatial arrangement of the measured points. Except for generating an esti-
mated prediction, kriging can provide a measure of an error, or uncertainty of the estimated sur-
face. Since the estimation variances can be mapped, a confidence placed in the estimates can be 
calculated and their spatial distribution can be presented on a map to assist in the decision-making 
process. The prediction standard error maps show a distribution of a square root of a prediction 
variance, which is a variation associated with differences between the measured and calculated 
values. The prediction standard error quantifies an uncertainty of a prediction. 

By Witold Fraczek, ESRI Application Prototype Lab, 
and Andrzej Bytnerowicz, USDA Forest Service

Applying GIS tools for studying the geographic 
distribution of regionalized variables
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